Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals.
نویسندگان
چکیده
The photoluminescence properties of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal route at 150 °C are reported. Energy-transfer from Gd(3+) to Tb(3+) is witnessed by the detailed analyses of excited-state lifetimes, emission quantum yields, and emission and excitation spectra at room temperature, for Tb(3+) concentrations ranging from 0.5 to 5.0 mol%. Absolute-emission quantum yields up to 42% are obtained by exciting within the (6)I7/2-17/2 (Gd(3+)) manifold at 272 nm. The room temperature emission spectrum is dominated by the (5)D4 → (7)F5 (Tb(3+)) transition at 543 nm, with a long decay-time (3.95-6.25 ms) and exhibiting a rise-time component. The (5)D3 → (7)F6 (Tb(3+)) rise-time (0.078 ms) and the (6)P7/2 → (8)S7/2 (Gd(3+)) decay-time (0.103 ms) are of the same order, supporting the Gd(3+) to Tb(3+) energy-transfer process. A remarkably longer lifetime of 2.29 ms was measured at 11 K for the (6)P7/2 → (8)S7/2 (Gd(3+)) emission upon excitation at 272 nm, while the emission spectrum at 11 K is dominated by the (6)P7/2 → (8)S7/2 transition line, showing that the Gd(3+) to Tb(3+) energy-transfer process is mainly phonon-assisted with an efficiency of ~95% at room temperature. The Gd(3+) to Tb(3+) energy transfer is governed by the exchange mechanism with rates between 10(2) and 10(3) s(-1), depending on the energy mismatch conditions between the (6)I7/2 and (6)P7/2 levels of Gd(3+) and the Tb(3+ 5)I7, (5)F2,3 and (5)H5,6,7 manifolds and the radial overlap integral values.
منابع مشابه
Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms.
A series of blue-luminescent Ir(III) complexes with a pendant binding site for lanthanide(III) ions has been synthesized and used to prepare Ir(III)/Ln(III) dyads (Ln = Eu, Tb, Gd). Photophysical studies were used to establish mechanisms of Ir→Ln (Ln = Tb, Eu) energy-transfer. In the Ir/Gd dyads, where direct Ir→Gd energy-transfer is not possible, significant quenching of Ir-based luminescence ...
متن کاملAdsorption Behavior of MWAR Toward Gd(III) in Aqueous Solution
Adsorption and desorption behavior of Gd(III) ionon macroporous weak acid resin (MWAR) had been investigated.The influence of operational conditions such as contact time, initial concentration of Gd(III) ion, initial pH of solution and temperature on the adsorption of Gd(III) ion had been examined. Experimental data were exploited for kinetic and thermodynamic evaluations ...
متن کاملSystematic study on the structures of salen type lanthanide complexes tuned by lanthanide contraction and corresponding luminescence.
Two types of N,N'-bis(salicylidene)-1,3-propanediamine (H2L) lanthanide complexes, viz. [Ln(NO3)3(H2L)2]·0.2CH3OH [Ln = La (1), Ce (2) and Pr (3)] and [Ln(NO3)3(H2L)2]2·CH2Cl2·CH3OH [Ln = Nd (4), Sm (5), Eu (6), Gd (7), Tb (8) and Yb (9)], have been isolated by reactions of H2L with Ln(NO3)3·6H2O. X-ray crystallographic and PXRD analysis reveal that 1-3 are isomorphic possessing a novel one-dim...
متن کاملNine members of a family of nine-membered cyclic coordination clusters; Fe6Ln3 wheels (Ln = Gd to Lu and Y).
We report a family of isostructural nonanuclear Fe(III)-Ln(III) cyclic coordination clusters [Fe(III)(6)Ln(III)(3)(μ-OMe)9(vanox)6(benz)6]. (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6), Lu (7), Y (8) and Gd (9)), containing an odd number of metal ions. The planar cyclic coordination cluster cores are built up from three [Fe2Ln] subunits.
متن کاملDown- and up-converting dual-mode YPO4:Yb(3+),Tb(3+) nanocrystals: synthesis and spectroscopic properties.
Tetragonal YPO4 nanocrystals doped with Yb(3+) and Tb(3+) ions were synthesized by 900 °C annealing of precursors obtained with a co-precipitation method in the presence of glycerine. These materials exhibited intense green luminescence under ultraviolet excitation and up-conversion emission from the (5)D3 and (5)D4 Tb(3+) excited states after irradiation with near infrared light (λ = 980 nm). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 37 شماره
صفحات -
تاریخ انتشار 2013